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Abstract

Disruptions in tokamaks are instabilities events which can damage the machine components. The avoidance and
mitigation of these events is desirable in present machines as well as in Next Step devices (such as ITER). A neural
network has been developed to predict the occurrence of disruptions caused by edge cooling mechanisms in ASDEX
Upgrade. The network works reliably and is able to predict the majority (85%) of the disruptions. The neural network
has been trained to predict the time interval up to the disruption and this makes it suitable to be used on-line either to
avoid disruptions (by means of auxiliary heating and reduction of gas puffing) or to mitigate the unavoidable ones. For
this last purpose, a solid pellet injector has been developed and tested; the injected impurity pellets have been shown to
reduce the vertical forces and the conductive fluxes to the divertor. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Tokamak plasmas may undergo a major instability
called disruption. Independent of its cause, a disruption
is triggered by the non-linear growth and interaction of
MHD helical modes which leads to the fast and irre-
versible loss of thermal confinement. Its consequences
are a large heat flux to the limiter or divertor structures
(thermal quench) and the Ohmic dissipation of the
plasma current due to the increased plasma resistivity
(current quench). In addition, in elongated configura-
tions, the plasma may lose its vertical stability after the
thermal quench or because of control errors. Both the
decaying plasma current and the moving current column
can induce large currents in the machine structures and
cause electromagnetic forces which can damage them. It
has also been observed that the large voltage associated
with the current quench may generate runaway electrons
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which, interacting with the plasma facing surfaces, can
cause their erosion or failure.

Existing machines have been designed to withstand
many disruptions, since one of their purposes is the in-
vestigation of disruptive boundaries. Nevertheless the
asymmetric distribution of the loads and the limited
lifetime of mechanical components are occasionally re-
sponsible for damage to the machine. The avoidance
and mitigation of disruptions is therefore strongly rec-
ommended in the existing tokamaks. In a tokamak-like
ITER, where the disruptive thermal load is predicted to
evaporate and melt 10-100 pm of localized portions of
the divertor target plate [1], avoidance and mitigation
systems are necessary to prolong the lifetime of the
machine components.

A pre-requisite for any avoidance or mitigation ac-
tion is a system which is able to recognize a forthcoming
plasma disruption. Disruptions have different physical
causes and happen in different regions of the operational
space; according to the parameter region in which they
take place, they are classified as: ideal beta-, density-,
low-¢ limits, locked mode at low density, neoclassical
locked mode and low-q, etc. Most of the plasma
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disruptions in ASDEX Upgrade are caused by edge
cooling mechanisms [2] (for example, high-electron or/
and impurity density) and happen in a plasma parameter
regime (poor L-mode confinement), which is far away
from the desired operational space (H-mode, high-f). In
addition, they are usually announced by well-identified
precursors (detachment, MARFE, growth and locking
of resistive tearing modes) which can be detected by
available diagnostics. Nevertheless none of these pre-
cursors alone can assure that a disruption is predicted
early enough. For some disruptions, MARFE and
locked modes have a very short life and their detection is
too late for any avoidance or mitigation action to be
able to take place. Besides, they do not necessarily lead
to a disruption and may even disappear after control
actions are taken.

In this work we make use of experience gathered
during several years of operation and from disruption
studies in order to train a neural network to recognize a
forthcoming disruption.

Along with the neural network, an injector for solid
impurity pellets (the so-called ‘killer’ pellets) has been
developed for ASDEX Upgrade. The injector is config-
ured to be triggered by the network when an imminent
disruption has been predicted. The injection of impurity
pellets in a plasma has already been proved to be a
method to reduce mechanical forces and thermal loads
during disruptions in present tokamaks [3].

2. Disruption prediction with a neural network
2.1. Artificial neural network

An artificial neural network is a non-linear function
mapping one multi-dimensional space, {X}, into another
one, {Z}. For an overview on the subject see, for ex-
ample, Ref. [4]. This function has a pre-defined structure
but contains several parameters which are going to be
determined during the training. The training consists of
the evaluation of the parameters which minimize the
difference between the target output, 7, and the network
output, z.

Among several possible structures of the network, we
use a, so-called, feed-forward multilayer (two layers, in
this work) perceptron. This kind of network is known to
approximate arbitrarily well any continuous multi-di-
mensional mapping [4]. The /ith component of the vector
output (h = 1,nz), can be written as

ny nx
2= Wiy + Wh, yl-—f%(mewm)v
=1 J=1
(1)

where y; is the ith component of the output of the first
layer; nx, ny and nz the dimension of the input vector,

the number of the hidden neurons and the dimension of
the network output, respectively, # (a) is a non-linear
function; in this work we chose it to be the sigmoidal
function: (14 exp(—a))”'. The input variable to the
first layer is transformed first linearly, by means of the
matrix WX; then the first layer generates ny non-linear
function which are combined together linearly by the
second layer (matrix WY) in order to fit the given target
space.

The values of the (nx+ 1) x ny+ (ny+ 1) X nz un-
known elements of the matrixes WX and WY are found
by minimizing an error function of the type

N
E=05x Y [EFw, WX, W) —iw], (2)
k=1

where the sum is extended to the whole training set.

Several minimization methods are available; they
consist in evaluating the derivatives of E with respect to
the elements of the WX and WY matrixes and in cor-
recting the unknown parameters using an appropriate
learning rate, J, in the following way:

OF
wxy Y — X = o (3)

i oWx;;
(n) is the iteration number.

2.2. Review of related works

Neural networks have already been shown to be
suitable for the prediction of disruptions in tokamaks.

The high-f disruption boundary was modelled in
DIII-D [5] using 33 plasma parameters as input to a
two-hidden-layers feed-forward perceptron. The output
of the network was the value of By = f,(aB)/I, at the
time of disruption for that shot. The neutral beam
heating phases from 84 disruptive discharges were used
for the training and validation. The ratio between the
network output and the actual value of ffy can be used
as f-limit detection parameter. The probability of cor-
rect disruption prediction and the probability of false
alarm can be respectively maximized and minimized by
choosing a proper alarm threshold for this ratio. The
network was shown to perform rather well for a set of 28
disruptions not used for training, with a 90% probability
of disruption detection and less than 20% probability of
false alarms.

For JET [6] a disruption alarm was trained to dis-
tinguish between pre-disruptive (output=1) and stable
plasmas (output=0). A one-hidden-layer feed-forward
perceptron was trained with 360 disruptive shots. The
best performance was achieved with a network using the
following seven input parameters: locked mode, density,
input power, radiated power, gs, /;, f, and derivative of
the stored energy. In this case the probability of dis-
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ruption detection, tested on the training data, was of
90% with a 5% probability of false alarms.

Unpublished work was carried out with the COM-
PASS-D database [7]; 215 shots and 7 input variables
(current, vertical and radial field, toroidal field, loop
voltage, total energy and f8,) were used to train a one-
hidden-layer feed-forward perceptron to distinguish be-
tween the disruptive plasmas (data selected 10 ms before
disruption, output=1) and non-disruptive conditions
(output =0). The ‘leave-one-out’ method was employed
with 10 hidden units for training and testing: all the
disruptions were recognized, and just two of the non-
disruptive shots were misclassified.

Exploratory work was done with TEXT disruptions
[8]. Using time-series-prediction a network was trained
with a soft-X-rays time trace from one shot and then
used to predict the disruption in other two discharges (3
ms in advance). A clustering method was used to define
a multi-D region, where locked modes are born and lead
to disruptions in TCV discharges [9].

2.3. Input and output data for ASDEX Upgrade

For the training a neural network needs a large
database of input vectors and associated outputs. The
database used to train and validate the network for
ASDEX Upgrade consists of discharges in the shot
range 10,000-11,400 with a lower-single-null plasma in
flat-top. Some shots were neglected owing to incomplete
or incorrect measurements. Disruptions caused by in-
jection of killer pellets or following a VDE were also
excluded. The pre-disruption phase of these shots and
complementary non-disruptive phases were selected to
generate the database for the training of the network.
The pre-disruption phase was defined as the L-mode
phase following the H-mode phase before the disruption
or as the phase starting just before a MARFE and
ending with the disruption, for a plasma which has been
for longer than 0.8 s in L-mode.

The output of the network was chosen to be the
time interval up to the disruption; this makes the
output a variable that is easy to interpret and which
can be used as a flexible trigger to avoid or mitigate a
disruption. For the pre-disruption phases the output
ranges from 0 to 0.8 s; for the non-disruptive phases it
is set equal to 0.8 s.

The input consists of the time histories of several
plasma parameters describing the plasma regime in the
discharge flat-top. The choice of input variables was
the result of a compromise between the physics and the
availability of the data in real-time, since the network
will be used for the real-time control of the discharge. A
preliminary set of 30 input variables was successively
reduced during the training by eliminating the variables
which did not significantly contribute to the output. This
is done firstly by evaluating the magnitude of the de-

rivative of the output with respect to the input variables

summed over the whole training set, i.e., ZkN:l Oz /Ox;

[5], which is a statistical measure of the sensitivity of the

output to a given input parameter (our output has di-

mension 1). Secondly the network is trained again with

reduced inputs until its performance starts to deteriorate
significantly.

The plasma parameters used as input to the network
presented in this work are:

1. the safety factor, gos;

2. the plasma internal inductivity, /;;

3. the plasma density divided by the Greenwald limit,
ne/J;

4. the radiated fraction of the input power;

5. the energy confinement time normalized with the time
predicted by a scaling law (Ref. [10, Eq. 12]);

6. a MARFE signal, using two divertor bolometer
channels, indicating the presence (= 1) or the absence
(=0) of a MARFE;

7. the locked mode signal, using the measurements from
the saddle coils, indicating the absence (=1) or the
presence (=0) of a locked mode;

8. the normalized beta, fiy;

9. the time derivatives of the variables no. 2,3,4,5 and 8.
The input variables were further normalized to the

[0,1] interval, time averaged over 25 ms and fed to

the network every 2.5 ms. The database of 15,373

data points from 99 disruptive shots and 12,636 data

points from non-disruptive shots was then used for
training.

The listed input variables were chosen to be dimen-
sionless in order to allow for the establishment of a in-
ter-machine network for disruption prediction. In fact, a
big disadvantage of the use of a network for disruption
prediction is the large number of these events needed for
the training. This prediction method could become
much more attractive if a network trained with data
from present tokamaks could be used on a new machine.
Such an approach is planned, in collaboration with
UKAEA, involving JET and COMPASS-D data, but is
not discussed here.

2.4. Training

The training consisted in minimizing the function:

N
E=,|N! Z[l — AtNN(k)/At(k)]z, (4)
k=1

where At and Atyy are the measured and the predicted
time to disruption, respectively.

The training was carried out with the Neural Net-
work Toolbox of Matlab and in particular with a self-
modified version of the subroutine employing the
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Levenberg—Marquardt algorithm [11] for the minimiza-
tion of Eq. (4)

Several networks with different number of hidden
neurons were trained and tested. The data were divided
in a training set (3/4 of the data) and a validation set.
The training lasted typically 50-70 cycles and was
stopped after checking that the function given by Eq. (4)
and calculated for the validation set had reached a
minimum or a stationary value. Several networks with a
typical RMS error of 15% were trained and validated
once more on a large number of shots outside of the
training database.

2.5. Network predictions

The performance of several ‘good’ networks was
tested off-line in the flat-top phase of 500 shots, in the
shot range 11,475-12,170, which were not included in
the training.

Only the disruptions in flat-top or within the first 100
ms of the plasma ramp-down-phase, with an X-point-
down during the last 50 ms preceding the disruption,
were considered in this analysis. The shots with large
impurity gas injection (which lead quickly to disruption)
or incomplete measurements and the disruptions caused
by VDE or killer pellets were disregarded. All other
shots were retained.

The disruption alarm was defined as Afyy < 50 ms
for 7.5 ms. The prediction of the disruption was defined
to be correct if the disruption alarm was activated in the
time interval [tgs; — 500 ms, #4]; a disruption alarm in
shots without a disruption or more than 500 ms before a
disruption was considered a false alarm; a disruption
was not recognized when the disruption alarm was not
activated.

The results of the analysis were as follows:

e 85% of the disruptions were recognized; the network
did not recognize the disruption in 10 of the 65 dis-
ruptive shots (15%);

e the network produced one or more false alarms in 5
of the 500 shots (1%).

Examples of the network prediction are shown in
Fig. 1 for (a) a density limit disruption and (b) a dis-
ruption following an impurity event. The disruptions,
that were not recognized, happened very fast (because
of impurity events, UFOs) or had been poorly repre-
sented in the training database (impurity accumulation
or disruption after a locked mode phase in ITB ex-
periments). The false alarms were caused by pre-dis-
ruption phases from which the plasma recovered
thanks to an action taken by the feed-back system
(increasing the heating power or closing a gas valve) or
by plasmas, close to the disruptive boundaries, which
did not disrupt (see Fig. 2).
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Fig. 1. (a) Network prediction for a density limit disruption;
the alarm conditions are reached at r = 3.955 s, 65 ms before
disruption. (b) Network prediction for a disruption following
an impurity event; the alarm conditions are reached at
t = 2.320 s, 60 ms before disruption.

3. Use of the neural network

The neural network is presently being installed to
work on-line as part of the control system of ASDEX
Upgrade. Its input data are sampled, time averaged and
normalized as it is done in the off-line program. After
verifying that the on-line system generates the same re-
sult as the off-line program, the network output will be
used to avoid or mitigate disruptions.

The performance of the network as a system to avoid
disruptions can only be checked by using it on-line.
Nevertheless we can already compare the off-line net-
work output with the output of the detachment detec-
tion algorithm, which is already employed in ASDEX
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Fig. 2. False alarm due to poor L-mode confinement after
turning off the NI power at high density.

Upgrade to avoid disruptions. This algorithm uses the
ratio between the H, emission from the inner and outer
divertor plates; this ratio is compared to a threshold
value and used to turn on heating and close gas valves.
Fig. 3 shows an experiment where, by modulating the
gas puff, the detachment phases appeared periodically
and the detachment algorithm reacted to these phases by
turning off the gas valve (at time 2.95, 3.4 and 4.55 s).
The network output remains above the disruption alarm
(set to 50 ms) up to 4.8 s and it could have been used to
control the gas valve in a similar way, if we had chosen
an avoidance threshold of 120 ms.

For disruption mitigation we foresee the use of an
impurity pellet injector; we have chosen the limit of
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Fig. 3. Comparison between the detachment indicator (used
here to control a gas valve) and the network prediction.

50 ms as disruption alarm to trigger it after verifying
that, with this threshold alarm, the percentage of false
alarms is acceptably low and that the percentage of pre-
dicted disruptions remains significant. This value of the
alarm threshold takes into account that: (1) the injector
is now situated 3.5 m from the plasma and the time delay
between trigger and pellet ablation is of the order of
15 ms; (2) the network output must be below 50 ms for
at least 7.5 ms before triggering the disruption alarm;
(3) a margin of a few tens of ms must be allowed to
compensate the error affecting the network prediction.

4. Impurity pellet injection
4.1. Background

The injection of an impurity pellet allows a soft
plasma termination. The reduction of the thermal load
to the target plates during the thermal quench is mostly
due to the cooling of the plasma by the ablation and
ionization of the pellet. The reduction of the vertical
forces in disruptions followed by VDE is due to the
faster decay of the current after pellet injection and to
the smaller currents induced in the passive stabilizer and
in the halo region [12]. Although impurity pellet injec-
tion mitigates disruptions in ASDEX Upgrade and the
development of this technique is pursued to protect the
machine, its application to ITER is not straightforward.
As already discussed in Ref. [13] the injection of high-Z
impurities in ITER is expected to generate an unac-
ceptable runaway current. The massive injection of
frozen pellets or of a liquid jet of deuterium has been
proposed as alternative for an ITER shutdown scenario.

Earlier experiments in ASDEX Upgrade [12] used
frozen neon pellets, prepared in a cryostat and injected
with a centrifuge. Since a cryo-system is not ideal for a
stand-by application, typical of a disruption mitigation
system, a new pellet gun for the injection of solid pellets
was developed. The injector was designed, built and
brought into operation on ASDEX Upgrade by the
second author in August 1998 and the experiments were
planned on the basis of the experience gathered in the
previous years. Since then, a guiding tube and additional
fast valves have been installed between injector and
vessel in order to reduce the propellant gas, which
reaches the plasma before the pellet, and its influence on
the plasma.

4.2. Technical specifications

The pellets used in this experiment were made of
silicon (Si) or titanium (Ti) powder mixed with molten
polyethylene (PE) and then extruded in the form of a
cylinder. Spheres of 2 mm of diameter were then ob-
tained by compression and heating. Si and Ti were
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Table 1

Weight and composition of the pellets used
Type Weight (mg) N; (I=Si or Ti) Grains (um) Ncn,
Si (60%)-PE 7 (4.2 Si) 0.9 x 10%° 15-20 (Si) 1.2 x 10%
Ti (72%)-PE 10 (7.2 Ti) 0.9 x 10% 10 (Ti) 1.2 x 102

chosen because of their ‘good’ radiative properties and
their acceptability in the machine; PE because of its
relatively low sublimation energy and its acceptable
chemical composition. These pellets were injected from
the low-field side and with a velocity of in the range
200-250 m/s; their weight and composition are listed in
Table 1.

4.3. Experimental data

Several experiments have been carried out with the
injector. We subdivide them in two main groups and
discuss the experimental observations accordingly:

(1) pellets injected in ‘healthy’ plasmas at a pre-pro-
grammed time, and

(2) pellets injected with the locked mode trigger in
plasmas with locked modes and pre-disruption
characteristics.

Group (1). At the beginning of the experimental
campaign the pellets were injected at a pre-programmed
time in order to test the injector and collect data in a
variety of plasma conditions. The target plasmas did not
have pre-disruption characteristics and had a relatively
high thermal energy. Independent of the plasma thermal
energy the plasma disrupts typically 2 ms after the ap-
pearance of the pellet at the plasma boundary (the pellet
goes half way through the plasma). The pellets of this
group were injected in plasmas with energies in the range
50-850 kJ. In plasmas with energies above 500 kJ the
pellets seem to ablate almost completely before they
leave the ¢ = 1 surface on the high-field side. In plasmas
with an energy below 500 kJ the pellets do not ablate
completely; a residual fragment is always seen by the
CCD camera on the high-field side. In the plasmas with
energies around 100 kJ the pellets poorly ablate; the
SXR cameras show ablation limited to the plasma cen-
tral region. These results indicate that these pellets are
oversized for these plasmas. We are particularly inter-
ested in these low-energy plasmas because the pre-dis-
ruption plasmas have typically a low energy in ASDEX
Upgrade. Nevertheless we prefer to work with large
pellets which contain enough impurities to mitigate the
disruption in the case of high-energy plasmas.

Group (2). In successive experimental campaigns
pellets were injected using the locked mode trigger.
Several of these pellets were injected in the presence of a
locked mode in plasmas with pre-disruption character-
istics. Some of these pellets reached the plasma after the

thermal quench. The pellets which reached the plasma
within a few ms after the onset of the disruption suffi-
ciently ablated during the immediate post-disruption
phase due to the presence of a large loop voltage and
consequently fast electrons. Nevertheless there is no
evidence of long lived runaway electrons generated by
the pellets. In very few discharges terminated with killer
pellets, the ECE measurements of temperature show a
short (1 ms) burst of supra-thermal electrons during the
ablation; this is followed by bursts of the hard X-ray
emission which last 2-3 ms and do not survive during
the whole current quench (5-10 ms). The remaining
pellets were injected in plasmas with neoclassical locked
modes, high-f and no pre-disruption characteristics; the
conclusions for group (1) also apply to these pellets.

4.4. Disruption forces

Disruptions caused by the injection of impurity pellets
had reduced halo currents and vertical forces (typically
50% less). It was shown in Ref. [14] that the forces as-
sociated with the halo currents are the major contributor
to the maximum vertical force (F,) acting on the vessel
support rods in ASDEX Upgrade and that F, ~ 0.4 [,B;
(I, is the maximum halo current toroidally averaged and
B, is the toroidal magnetic field). Fig. 4 shows the dis-
tribution of the magnitude of the ratio 7./, (I, is the
plasma current) as function of the plasma energy. The

Ll
0.5
M halo ":-"'E. .
o 04 -"‘ii;i-f-'_"-' ) )
R ¥
0.21 ;k* A A
* xX ¥ & X
200 400 600
Energy (kJ)

Fig. 4. Ratio between halo current and plasma current versus
plasma energy: shots without pellet (box), pellets injected with
timer (triangle), with locked mode trigger in non-disruptive
plasmas (x), with the locked mode trigger about the time of the
thermal quench (star).
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picture shows that most of the plasmas disrupted with an
energy in the range 0-300 kJ. All the pellets injected with
the timer reduced the mechanical forces but were also in
an energy range which is not typical for ASDEX Up-
grade disruptions. In the shots, in which the pellets
reached the plasma during the disruption, the halo cur-
rents were also in the lower range. The large scatter in the
values of I,/1, at low energy is due to the different im-
purity contamination of the plasma at the disruption
time. It has also been observed that strong impurity puff
in high-¢, low-energy plasmas and impurity events sig-
nificantly reduce the disruption loads.

4.5. Thermal loads

Up to 100% of the thermal energy is typically de-
posited on the divertor plates during the thermal
quench; during the current quench less than 30% of the
remaining magnetic energy reaches the divertor and
mostly in form of radiation. The impurity pellets reduce
the thermal load to the divertor by suppressing the
conductive heat flux during the thermal quench and in-
creasing the radiated power during the whole current
quench. Fig. 5 shows the time traces of the power de-
posited to the divertor and of the radiated power in two
density limit disruptions without and with the mitigating
effect of a killer pellet. Shot 13302 has a minor disrup-
tion at 1 = 4.46 s and the major disruption at t = 4.5 s;
respectively, 60 and 40 MW of power are seen reaching
the divertor plate (shadow region) after these events.

#13302 #13541
killer pellet

1

[ Plasma current (MA)
1 L L L 1 0
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e 500
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Fig. 5. Plasma current, thermal energy, divertor target power
and radiated energy in two density limit disruptions without
(13,302) and with (13,541) injection of a killer pellet.

The thermal quench is suppressed in shot 13541, where a
killer pellet was injected with the locked mode trigger
and ablates at t = 2.86 s. Correspondently the radiated
power has a maximum of 300 MW.

5. Conclusions

The present work shows that a disruption recognition
system based on a neural network is feasible, relatively
reliable (85% predicted events and 1% false predictions)
and it motivates its wider application. The feed-forward
calculation of the output of a trained network is simple
and fast, making it suitable for real-time implementa-
tion. In addition, the chosen output of the network was
the time to disruption, which is a variable that can be
used for avoidance as well as for mitigation of disrup-
tions. A new impurity pellet injector has been extensively
tested with Si— or Ti-PE pellets: it has been proved to
work in a reliable way and to fulfill its purpose of mit-
igating the disruption loads. The injector is planned to
be routinely on stand-by and to be triggered by the
disruption alarm system described above.
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